

Chemistry (Salters)

Advanced GCE A2 7887

Advanced Subsidiary GCE AS 3887

Mark Schemes for the Units

June 2007

3887/7887/MS/R/07

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (Salters) (7887)

Advanced Subsidiary GCE Chemistry (Salters) (3887)

MARK SCHEME ON THE UNITS

Unit	Content	Page
2848	Chemistry of Natural Resources	1
2849	Chemistry of Materials	9
2850	Chemistry for Life	17
2852/01	Skills for Chemistry	25
2854	Chemistry by Design	35
*	Grade Thresholds	46

Mark Scheme 2848 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
- con = contradiction (in cases where candidates contradict themselves in the same response)
- sf = error in the number of significant figures
- 4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

conventions used in (the Mark Scheme e	 alternative and acceptable answers for the same marking parates marking points Separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which must be used to gain credit error carried forward alternative wording or reverse argument
---	---

2848

Mark Sche	2848 June 2007 F				Version Final		
Question	Expected an	swers			Marks		
1 (a)		The polymer is an (electrical) insulator (heat is CON)/ prevent electric shock AW (1) IGNORE references to corrosion.					
1 (b) (i)	Froth flotation	Froth flotation (1)					
1 (b) (ii)	Any TWO fro	<i>m</i> :			2		
	-	iven water repellant/waterp rgent cause the mixture to)	•	•	1);		
	Grains* are concentrated (AW) in the froth/ rise to surface with air bubbles (1);						
	Ore grains scooped (<i>AW</i>) off the surface (must be implied) with froth (1) *grains/minerals/copper/ore/metal CON molecules once						
1 (c) (i)	Cu ₂ S (1)				1		
1 (c) (ii)	$Cu_2S + O_2 \rightarrow 2 Cu + SO_2$						
	LHS – coppe	r sulphide (ecf from c(i)) plu	s O ₂ (1)				
	Completely o	orrect (with ecf if necessary	r) (1)				
1 (c) (iii)	sulphuric aci	d/ H ₂ SO ₄ (1)			1		
1 (d) (i)	Solid collects	on filter paper (can be labe	elled on diagram) <i>AW</i> (1);	2		
	suction/vacu AW (1)	um (can be labelled on diag	ram) makes the	process faster			
1 (d) (ii)	S^{2-} only (1)				1		
1 (d) (iii)	RMM CuSO ₄	= 159.5 (1);			3		
	<u>100 × 63.5</u> (1) (ecf from RMM);_					
	159.5						
	= 40 g (2s.f.) (1) (Any worked out answe	er to 2sf)				
				Tota	al 14		

Mark Scheme

Mark Scheme			Code 48	Session June	Year 2007		ersion Final
Question	Expected an	swers					Marks
2 (a) (i)	Oxidation s	tate of sulphu ation state o		= 0 = -1	(1) (1)		4
		igns are after the					
2 (a) (ii)		sed, as the (S) oxidation state has increased/ oxygen added/ loses ons (1) (ecf from (i) if oxidation state goes down and this is given as n)					1
2 (b) (i)	not on its ow	e/yellow (or comb ו) (1) (1) (<i>NOT clear</i>)	oination there	eof. Red with	one of these b	ut	2
2 (b) (ii)	16.20 × 0.010 (= 1.62 × 10	00 (1) / 1000 and ⁴ mol)	d evaluate (1)			2
2 (b) (iii)	answer from	b(ii) or 1.62 × 10 ⁻	^{–4} mol (1)				1
2 (b) (iv)	answer from ×1000 and ev $(3.24 \times 10^{-3} \text{ r})$	valuate (1)					2
2 (b) (v)		swer to b(iv) and ³ (2)) ALLOW 2–					2
2 (b) (vi)	<i>if ans (b) (v)</i> <i>if 0.01 g dm[−]</i> preserved (1)	l depend upon th < 0.01 g dm ⁻³ the ³ < ans (b) (v) < 0); > 0.25 g dm ⁻³ the	en wine goes).25 g dm ⁻³ v	off / below m vithin range (A	inimum (1); \W)/ wine	(1)	1
	<u> </u>				Т	otal	15

Mark Scheme

Mark Scheme		Unit Code 2848	Session June	Year 2007	Version Final
Question	Expected an	swers			Marks
3 (a)	Halogenoalka	anes / haloalkanes(1)			1
3 (b) (i)	score others) Lone pair on	relevant O pointing along be es shown, one O (shown δ^-)); (lose this mai ond (1);		n
3 (b) (ii)	electronegati	h δ^+ charge / H in polarised			2
3 (b) (iii)	Permanent d	ipole–(permanent) dipole			1
3 (b) (iv)	bonds betwe • bromometh	n chloromethane molecules en water molecules (1); ane imf stronger than chlorc .–i.d./ caused by more elect	methane imf (1);	3 <i>M</i> r
3 (c) (i)		between O and H (1) rs and one unpaired electro	n on O (1) <i>char</i> g	ge is CON to th	2 is
3 (c) (ii)	Homolytic/ ho	omolysis (1) IGNORE photo	dissociation		1
3 (c) (iii)	uv (1); Sun (′	1)			2
3 (c) (iv)	$H_2O + O \rightarrow 2$	OH (1)			1
3 (c) (v)	Propagation	(1); termination (1)			2

2848

3 (d) (i)	$CH_3CI + H_2O \rightarrow CH_3OH + HCI$ correct species on LHS (1); completely correct (1) Ignore CH_3Br on LHS. ALLOW CH_4O on RHS.	2
3 (d) (ii)	Methanol (1) No ecf	1
3 (d) (iii)	Nucleophilic (1); substitution (1) Extras CON	2
3 (e) (i)	C–C/, because C/ more electronegative (than Br). Ignore comparisons with carbon(1)	1
3 (e) (ii)	C–C/, because C/ has a smaller atomic core/ is smaller/ shorter bond (than Br) (1)	1
3 (e) (iii)	Bond strength, because the bromomethane reacts faster (and has the weaker/ more easily broken C–Hal bond) (1) Ignore other reasoning. No ecf.	1
3 (f) (i)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Correct species (1); balancing <i>depends on first</i> (1) IGNORE state symbols	2
3 (f) (ii)	(Reaction in equation 3.3 requires energy for a bond to be broken but) (reaction shown by) equation 3.4 has no bond breaking/ <u>only</u> bond formation (1)	1
	Total	30

Mark Scheme		Unit Code 2848	Session June	Year V 2007	ersion Final
Question	Expected an		Curro	2001	Marks
4 (a)	Fractional dis	tillation/ fractionation (1)			1
4 (b)	Increasing the temperature (makes the reaction faster) (1); At higher temperatures the particles have more (kinetic) energy/move faster/ vibration/ more frequent collisions (1); More particles have an energy greater than the activation enthalpy when they <u>collide</u> (1); Increasing the pressure (makes the reaction faster) (1); At higher pressures there are more particles per unit of volume/ closer together (1); So more frequent collisions / more likely to collide/ collide more often/				
	QWC: logical	ce of collision (1) , correct use in context of a ticle; activation enthalpy/er e			1
4 (c) (i)	Increasing th endothermic <i>mentioned in</i>	<u>m</u> moves to oppose change (AW) (1); g the temperature pushes (the position of) <u>equilibrium</u> * in the nic direction/ direction that uses energy (1); * <i>can be assumed if</i> <i>d in first mpt</i> sing the temperature will increase the yield of ethene (1)			
4 (c) (ii)	side with few	Increasing the pressure pushes (the position of) <u>equilibrium</u> towards the side with fewer molecules/ smaller volume (1); So increasing the pressure will decrease the yield of ethene (1)			
4 (d) (i)	Conducting polymers /poly(ethyne) /Teflon/ PTFE/ Bakelite (1)				
4 (d) (ii)	Addition (1)	IOT additional			1
4 (d) (iii)	Any ONE from	<i>n</i> :			
	Coating elect Washing up I shapes (1) Other sensib) bags (1); can be rolled int rical wires (1); good electric powls, etc. (1); can easily b le suggestions at match use NOT strong or	cal insulator (1); e moulded into c		2
4 (d) (iv)	Softens/ flow	s/ melts/can be remoulded	when <u>warmed/ h</u>	neated (1)	1
4 (e) (i)		2e ⁻ (ALLOW e for electres (1); balancing <i>depends</i>	• •	$Cl^- \rightarrow Cl + e^-$	2

	Total	31
	QWC: two sentences; spelling, punctuation and grammar correct. (1 error allowed)	1
	due to molecules being closer together (1)	
	the chains move over each other less easily (1); because there are <u>stronger</u> imf (1); (IGNORE "more imf")	
4 (g) (ii)	Regions have a high degree of order/ regular/ chains more aligned (1);	4
	IGNORE brackets and <i>n</i> . (must have terminal bonds)	
4 (g) (i)	Н СІ — С—С— – Ц Ц Н Н	1
4 (f) (ii)	Different arrangement (of groups) around a (carbon–carbon) double bond (AW) Allow from diagram (1) ALLOW other centres of restricted rotation	1
A (f) (::)	Different erronsement (of groups) groupd a (carbon, carbon) double band	4
4 (f) (i)	Hydrogen chloride/ HCI(unless (aq)) (1) IGNORE hydrochloric acid	1
	of high electron density (1); Bonds by accepting a pair of electrons (can be shown via mechanism) (1); Two molecules react to form <u>one</u> product (aw) (1)	
4 (e) (ii)	(Partially) positively charged/electron deficient reagent/attracted to areas	3

Mark Scheme 2849 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme</u>. <u>Remember that scripts may be</u> <u>returned to Centres</u>.
 - x = incorrect response (errors may also be underlined)
 - * = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Un	nit Code	Session	Year	Version		
Abbreviations,	/	= alternativ	e and acceptable a	nswers for the same	e marking point		
annotations and	•	= separates marking points					
conventions	NOT	= answers	which are not worth	y of credit			
used in the Mark	()	= words wi	nich are not essentia	al to gain credit			
Scheme		= (underlin	ing) key words whic	h must be used to g	gain credit		
	ecf	= error carried forward					
	AW	= alternative wording					
	ora						

Mark Sche	2849 June 2007 Final					
Question	Expected and	swers				Marks
1 (a)) (1).			1
1 (b)	3		•••			1
1 (c)	(Expose to) ic	dine (vapour)/uv ra	diation (1).			1
1 (d) (i)	166					1
1 (d) (ii)	CH ₃ (1) ⁺ charge on fo	rmula (1).				2
1 (d) (iii) 1 (e) (i)	1 mark for con Conc. sulphu	1 for correct protons (a rrect intensity ratio a ric acid absorbs wat ier's principle) equil	allow 3:3 (1). er	oves to the rig		2
1 (e) (ii)		H_2 C H_2			<u>, , , , , , , , , , , , , , , , , , , </u>	2
1 (e) (iii)	Elimination / c H ₃ C H <i>Cis-trans</i> ison different spati be in different	H ners / 2 non-equival al arrangements of positions (1); tion about a double	H ent groups on eac the groups / COC			4
					Total	17

Mark Sche	Iark SchemeUnit CodeSessionYearVersion2849June2007Final						
Question	Expected an					Marks	
2 (a) (i)	+4 (1) accept					1	
2 (a) (ii)		0.32 V (1); Cd (half-cell) because the Cd half-cell gains electrons from the Ni half- ell / electrons move to the positive electrode AW ORA (1).					
2 (a) (iii)	Correct react	$cd(OH)_2 + Ni(OH)_2 \rightarrow Cd + NiO_2 + 2H_2O$ correct reactants (1); orrect products and balanced (1); prong way round but balanced (1).					
2 (a) (iv)	Concentration	Concentration of solutions = 1 mol dm ^{-3} /1 M/1 molar (1); emperature 298 K/25 ^o C and pressure = 1 atmosphere <i>or equivalent (10</i> ²					
2 (b) (i)	$H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$	NH CH ₂				1	
2 (b) (ii)	$-\left(\begin{array}{c} 0 \\ 0 \\ -C \\ -C \end{array} \right) \left(\begin{array}{c} H_2 \\ -C \\ -$	$H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 $	/			2	
2 (b) (iii)	Water formed replaces the	in the condensation water used up in the ion and hydrolysis c	hydrolysis (1).	2).		2	
2 (b) (iv)	Nylon has hy whereas poly allow Van de	drogen bonding (1); (ethene) has (instant <i>Waals forces;</i> iding is much stronge	taneous dipole-	induced) dipo		3	
	• • •				Total	15	

Mark SchemeUnit Code 2849Session JuneYear 2007Version Final						
Question	Expected an	swers		•		Marks
3 (a)	H ^{IIIIIII} H ₃ C NH ₂	5	$CH_2C_6H_5$ H_CH_3 H_CH_3 H_CH_3	cture;		2
3 (b) (i)	$H_{3C}^{H_{2}C_{6}H}$	-	y type of correc	t structure/forn	nula (1).	1
3 (b) (ii)	Solvent disso point of solve use (minimun leave/cool to	Ives amphetamine nt is lower than so n amount of) hot/w crystallise (1); als and dry (1).	e when hot but blid's m.pt. (1);	not when cool		4
3 (b) (iii)	Tablets are e soluble there	asier for controllin fore will be quicke amphetamine's s	r acting/get into	bloodstream r	nore easily /	1
3 (c) (i)	Carbonyl/keto Amine / amin	one (1);	<u></u>			2
3 (c) (ii)	Strong peak a indicates C=C <i>or</i> no broad pea	around 1720 cm ⁻¹) in ketone therefo k at about 3600 ci)H present therefo	ore cathinone (´ m ⁻¹ (1);			2
3 (c) (iii)				· /,		1
3 (d)	Active sites o Only one ster (1); at low temper temperatures to overcome at high temper together are b	n enzymes have s eoisomer has the atures there is no (1); the <u>activation</u> energy the <u>activation</u> energy the interactor proken/tertiary stru- parate sheet for de	complementar t enough energ rgy for the reac ctions holding t ucture/active sit	y shape to fit in y / more energ tion AW (1); he enzyme stru e shape chang	y at higher ucture es (1).	6
					Total	19

Mark Sche	me	Unit Code 2849	Session June	Year 2007	Versi Fina	-
Question	Expected and	swers		·		Marks
4 (a) (i)		are about 3400–380 nes shown on graph		ach);		3
4 (a) (ii)	First order (1) constant half-					2
4 (a) (iii)	s ^{−1} (1). ecf	aracetamol] (1); ecf				2
4 (a) (iv)	0.05–0.06 g /	blation (4 hours =14 50–60 mg(1) ecf for ts but not incorrect u	incorrect time of	conversion.		2
4 (b) (i)	Phenol/hydro	kyl (1)				1
4 (b) (ii)		de (solution) (1); forms (1) <i>as always</i> r	any shade of v	iolet/purple, ign	ore	2
4 (c)	acid/ethanoat	OH H ₃ C or the aminophenol/a e (2); rect ionic charge on	·		ic	3
4 (d) (i)	Suitable filter/ (1); zero absorbat measure abso construct a ca read sample o concentration	having complimentain nce/transmission with prbance/transmission libration curve (1); concentration off grat) (1).	ry colour of sar n water/solvent n of samples of oh (of absorbar	nple used in co (1); known concen	tration (1);	5
4 (d) (ii)	Tangent of gr	aph is drawn at time ngent gives rate of re				2
					Total	22

Mark Sche	eme	Unit Code 2849	Session June	Year 2007	Versi Fina	-
Question	Expected and		•			Marks
5 (a) (i)	3s ² 3p ⁶ 3d ¹⁰ 4 1 mark for add			ed correctly (1);		2
5 (a) (ii)	4s orbital		·			1
5 (a) (iii)	$CH_3COO^-(1)$					1
5 (b) (i)	$H_2O_{H_1}$	H ₂ dative covalent bo including charge (1) bonded to the Cu (1 1););			4
5 (b) (ii)	Cu ²⁺ (aq) + formulae corre	$2OH^{-}(aq) \rightarrow Cu(O)$		(1).		2
5 (b) (iii)	Dissolves AW dark/royal blu	(1);				2
5 (c)	Copper(II) ion	s absorb red light / r prbed/transmitted is l		electrons (1);		2
5 (d)	Reddish brow this is formed E^{Θ} for SO ₂ is i	n stain is due to cop by reduction of copp more negative than pper(II) ions AW (1).	per (1); per(II) ions (1); <i>E</i> ^e for Cu(s) the	erefore SO_2 will		3
					Total	17

Mark Scheme 2850 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (3) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks $(\frac{1}{2})$ should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme</u>. <u>Remember that scripts may be</u> <u>returned to Centres</u>.
 - x = incorrect response (errors may also be underlined)
 - * = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

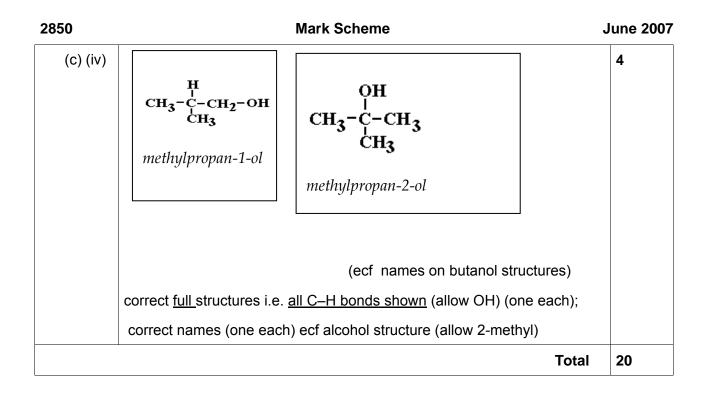
the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument
-----------------	--

2850

Mark Scheme

June 2007

Mark Scheme		ne	Unit (28		Session June	Year 2007	Version Final
Quest	ion	Expected	answers				Marks
1 (a)		4 2 α(1); ²³⁷ ₉₃	$\frac{7}{3}$ ecf (1); ecf on	proton numbe	er Np (1) NO	T Americium	3
(b)	by container (walls)/thin foil/few cm air/paper(1) (property mark) NOT skin				2		
(b)	(ii)	(collide wit	h air molecules) a	ind knock/ rer	nove/release e	electrons (off)(1) 1
 (c) (i) moles americium = 88.3/241(= 0.366) and moles oxygen 11.7/16(= 0.73)(1 AmO₂ (1); (just on own scores both marks) Am₂O on own – zero but ecf on upside down ratio 				3)(1) 2			
(c) (ii) 0.008 × 27			3(ecf on c(i) but n igs separately pro); = 0.0004 (1)	3
(d)	<i>(</i> i)						3
-		sotope	protons	neutrons	electro	ns	
		ricium-243 ricium-241	95 95	148 146	95 95		
		one mark f	or each correct co	olumn (usual	ecf's)		
(d)	(ii)	$^{243}_{94} Pu$ one mark for each				2	
						Tot	al 16


2850		Mark Schen	ne		June 20
Mark Schen	ne	Unit Code 2850	Session June	Year 2007	Version Final
2 (a) (i)	0 5 0	ons between left O and S(lone pairs (ecf) on S <u>and</u> dative pair from S to right C	Ó's(1)		
(a) (ii)		of electrons(NOT bonds)(A <u>ons</u>)(1)as far as poss/ <u>mini</u>			
(b)		correct(1) 2SO ₂ (g) + 2H ₂ C)(allow multiples/half);	$O(I/g) + O_2(g) \rightarrow$ state symbols(1);		3
(c) (i)	Heterogene	ous			1
(c) (ii)	costs less/m	netals expensive(1); big su	rface area(1)		2
(d) (i)	1.5(1)				1
(d) (ii)		pose/store/transport/salea	ble(1)		1
(e) 5 ticks: con correct 'ticks' 6 zero	arrangemer √ The entrop Entropy is A substand The symbo	be thought of in terms of t t' of a chemical system. y change in ' equation 2.2 ' a measure of the 'disorder ce in the solid state has hig of for entropy is 'S', is accompanied by a decr	' above has a pos ' of a system. her entropy than	sitive sign.	
(f)	mean/avera	pies for gaseous state/not ge bond enthalpies ora(1) ow 'not standard conditions	NOT estimate	es/using	1
				Tot	al 22

Mark Sche	me	Unit Code 2850	Session June	Year V 2007	/ersion Final
Question	Expected ar	nswers			Marks
3 (a) (i)	C (1); A(1); C	C(1); A,B,C all needed(1)			4
(a) (ii)	C ₁₀ H ₁₆				1
(a) (iii)		oup/double bond/functional g h atoms connected(AW)/wha bond	-		1
(b)	(0.06) ecf (1)	$HCO_3 = 10/84 \text{ or over } 168(= 0)$ hove x 24(= 1.4) dm ³ ecf(1)		-	3
(c) (i) decreases down group			1		
(C) (ii)	energy level(energy requi	ird/next electron breaks into 1); red prohibitive/ very hard/diff re strongly attracted(1) NOT	icult/lots of ene	ergy needed/	2
(C) (iii)	from equation calcium more qualifying sta e.g. Ca react	<u>etion</u> produces hydrogen(1); a n; e reactive (ora can be implied atement which illustrates how as more vigorously with cold v ed equation (ignore state syn	d) (1); r calcium is mo water/bubbles t	re reactive (1)	e 5
	<u> </u>			Total	17

2850

June 2007

Mark Sche	me	Unit Code 2850	Session June	Year \ 2007	/ersion Final
Question	Expected an	swers	-	<u> </u>	Marks
4 (a) (i)		y water on combustion/no ca er energy density/renewable			1
	(not no green	house gases); NOT no poll	ution.		
(a) (ii)	oil/ reforming/appropriate metal + water/sodium hydride (not Powerballs alone) (1); fossil fuels used in power stations to generate the electricity/ fossils fuels used directly (NB must be linked to a sensible answer to a ii above) 1			1	
		propriate metal + water/sodiu	ım hydride (not	Powerballs alone)
(a) (iii)	fossil fuels us	ed in power stations to gene	erate the electri	city/	1
		ised directly(NB must be <u>lir</u>	<u>ked to a sensit</u>	<u>ble answer</u> to a ii	
	electricity not	generated from a renewable	e source		
(b) (i) $[Na]^{+}(1)$; (allow eight electrons the same around the Na ⁺).bracket not necessary				2	
	[H [▲]] ⁻ (1); (two different around H⁻) ions	must clearly b	e separate	
(b) (ii)			2		
	one side inco	rrect but balanced correctly	(1)		
	formulae corr	ect but not balanced correct	ly is con theref	ore 1 mark.	
(b) (iii)	NaOH corros	ive/harmful/ <u>strongly</u> alkaline	(basic)/high pH	12+ (1)	1
(c) (i)	measure of te	endency/how easy/probability	y(AW)(1);to aut	o ignite (AW)(1)	2
(c) (ii)	<u>Pattern</u> (max (1)	. 2): longer chain/more atom	is, greater enth	alpy change (AW)	5 max.
	(not decrease	es); (directly) proportional/ s	ame increase (A	AW)(1);	
	<u>Reasons</u> (ma and	x. 2): more bonds broken; m	ore bonds form	ied; <u>same</u> numbei	
	<u>same </u> type;				
	<u>Final mark</u> ex answer	tra CH ₂ unit/structural fragm	ent(AW)could t	be in 'pattern'	
(c) (iii)	same <u>molecu</u> (1);	<u>llar/</u> atoms/type <u>and</u> number f	ormula differen	t structural (AW)	1

Mark Scheme 2852/01 June 2007

Salters Advanced Chemistry Open Book

Guidance for Examiners

These notes are to help you to apply the mark scheme. Please use the final standardised mark scheme as your main reference document.

1. ANNOTATION OF SCRIPTS

No comments should be written on scripts unless they relate directly to the mark scheme.

1.1 Summary

- **Tick** where you award a mark (max. 4). (If sentences are not used, deduct one mark).
- Put a **ringed total** at the end of the summary.
- Transfer the total to the front of the script.
- Check the candidate's declared word count.

1.2 Chemistry and Evaluation

- **Tick** where you award a mark.
- Write the mark code e.g. '3a' in the right hand margin of the script.
- Put a **ring** around chemistry codes.
- Underline evaluation codes: <u>12a</u>
- Use the **left hand margin** for any other notes you make (see 1.4 '*Helpful Abbreviations*' below).
- Add up the total chemistry and evaluation marks and transfer to the grid.

1.3 Research and Communication

• Use the **left hand margin** to highlight evidence to support your awarding of *Research* and *Communication* marks e.g. *S* for a spelling error (see *Sections 2* and 3 below).

3

1.4 Helpful Abbreviations

X	incorrect chemistry
^	omission / 'not enough'
Bod	benefit of the doubt
Nbod	not benefit of the doubt
ecf	error carried forward
Con	contradiction
wavy line	irrelevant material
R	repetition
A	annotation of source
S	spelling error
G	grammatical error
Т	technical term error
E	equation

CHECKERS' RESPONSIBILITIES.

You need to brief your checker to check that the marks you have awarded have been **correctly processed** to give the correct total on the MS2.

Your checker needs to:

- 1. Count up the number of **ringed codes** in the right hand margin. This total should agree with the total for **Chemistry** on the front of the script.
- 2. Count up the number of **underlined codes** in the right hand margin. This total should agree with the total for **Evaluation** on the front of the script.
- 3. Check your addition for **Research and Communication** marks on the front of the script.
- 4. Check that the marks have been added to give a **correct overall total**.
- 5. Either: Check that the total has been **correctly transferred** to the correct candidate on the MS2 and that the **computer coding** lozenges have been correctly filled in.

CHEMISTRY

Outline how the main pollutants are formed in vehicle engines and the environmental problems they cause. Explain why different types of vehicle engine produce different exhaust emissions.

[9]

[10]

1	How pollutants are formed		pg
а	NO _x formed when nitrogen and oxygen in air react at high temperatures;	1	7/3
b	CO comes from incomplete combustion and HC is unburnt fuel;	1	7
С	Complete combustion of fuel gives carbon dioxide and water	1	—

2	Further reactions		
а	NO _x reacts with HC to produce photochemical oxidants such as peroxyacetyl	1	3
	nitrate (PAN)/ozone; owtte		
b	Ozone formed from photochemical reaction of NO_x and O_2 and concentration	1	4
	builds up;		
С	Extra NO ₂ makes ozone formation faster and disrupts steady state:	1	4

Give a detailed account of the reaction mechanisms involved in the production of acid rain from atmospheric nitrogen.

3 P	roduction of NO		pg
а	at high temperature (homolytic fission of) O ₂ molecule produces (two) oxygen atoms / free radicals; statement	1	3
b	oxygen atom / free radical reacts (with nitrogen) to form nitrogen monoxide, which oxidises to form nitrogen dioxide; statement	1	3

4	Acid rain		pg
а	nitrogen dioxide reacts with OH radical to form nitric acid;	1	4

5	Reaction mechanism		pg
а	Identifies initiation and propagation stages;	1	

Describe how heterogeneous catalysts are used to reduce levels of air pollution from vehicles. Your answer should include....

- an explanation of how heterogeneous catalysts work.
- a discussion of how titanium dioxide crystals on Noxer blocks catalyse oxidation reactions that remove NO_x from the atmosphere.
- the way in which Three Way Catalytic converters are designed to give optimum conversion of pollutants.

6	Action of heterogeneous catalysts		pg
а	Heterogeneous catalysts are in a different phase to the reactants/involve adsorption and desorption;	1	CI
b	Reactant adsorbed onto surface; bonds are weakened and break; clear statement	1	CI
С	New bonds form, bonds with catalyst are weakened / break or molecules diffuse away; owtte;	1	CI
d	CO and HC oxidised by catalyst and NOx reduced	1	CI

7	Removal of NO _x by NOXER blocks		pg
а	TiO ₂ absorbs (UV) light, electrons are excited; (statement);	1	5
b	Water splits to give a hydroxyl radical and an electron that is given back to the TiO ₂ ; allow annotated eqn.		5
С	Both the hydroxyl radical and the superoxide ion form nitrate ions from nitrogen oxides (statement).	1	5
d	The nitrate washes into the concrete to form stable compounds;	1	5
е	NOXER reactions are faster because energy is absorbed by the coating; reactants are held together; titanium oxide is a better oxidiser; (any 2 points)	1	5

8	Extra chemistry (2 max.)	
	Pollutants that come directly from the engine are PRIMARY pollutants;	
	discussion of free radical as species with an unpaired electron	
	definition of initiation and/or propagation reactions;	
	homolytic fission – one electron goes to each atom	
	shows changes in oxidation states of N in reactions	
	nitrates are very soluble and so are washed away by rain.	
	catalysts work by lowering activation energy/ providing a different reaction pathway	

EVALUATION

Outline how the main pollutants are formed in vehicle engines and the environmental problems they cause. Explain why different types of vehicle engine produce different exhaust emissions.

		[9]
Environmental problems		
Any 2 points about primary pollutants from:	1	3/4
NO _x absorbs IR/causes climate change;		
CO is toxic/inhibits oxygen transport in blood;		
SO _x causes respiratory difficulties / acid rain;		
CO ₂ causes climate change;		
Photochemical smogs cause eye irritations/respiratory difficulties;	1	3
	Any 2 points about primary pollutants from: NO _x absorbs IR/causes climate change; CO is toxic/inhibits oxygen transport in blood; SO _x causes respiratory difficulties / acid rain; CO ₂ causes climate change;	Any 2 points about primary pollutants from: 1 NOx absorbs IR/causes climate change; 1 CO is toxic/inhibits oxygen transport in blood; 1 SOx causes respiratory difficulties / acid rain; 1 CO2 causes climate change; 1

10	Different engine types		pg
а	Engine types differ because fuel:air ratio is different;	1	7
b	conventional engine produces high levels of NO _x due to high internal	1	7
	temperatures AND lean burn engine is cooler so produces less NO _x ;		
С	lean burn produces more HC because after fuel is burnt, concentration is too low	1	7
	to support combustion;		
d	Under lean conditions, HCs and CO are removed / oxidised (by the catalyst) -	1	9
	there is less conversion of NO _x ; OWTTE		
е	Under rich conditions NO _x is converted (by the catalyst) but there is not enough	1	9
	oxygen to remove CO or HC; OWTTE		

Describe how heterogeneous catalysts are used to reduce levels of air pollution from vehicles. Your answer should include....

- an explanation of how heterogeneous catalysts work.
- a discussion of how titanium dioxide crystals on Noxer blocks catalyse oxidation reactions that remove NO_x from the atmosphere.
- the way in which Three Way Catalytic converters are designed to give optimum conversion of pollutants.

[10]

а	Platinum group metals are used with two examples from: active at (relatively) low temps / good thermal stability / poison resistant / long performance (50 000 miles);		8
b	honeycomb structure or small crystals gives large surface area;	1	8
С	Mixture of metals and oxides provide oxygen storage capacity;	1	8
d	Stoichiometric mixtures give optimum conversion of pollutants.	1	8
е	Ceria, CeO ₂ , stores oxygen in lean conditions and releases it in rich;	1	9

Identify the problems that scientists still need to solve in reducing harmful vehicle emissions. [3]

12 Future work			pg
а	(In petrol engines) catalysts need to work when engine starts; plus example of possible future strategy: using catalysts that operate at lower temps / pre-heating the catalyst / trapping HC in molecular sieve / recirculating exhaust gas;	1	9
b	(In diesel engines) Carbon or particulates clog filters and combustion damages filter / filter difficult to regenerate;	1	9
С	Need to develop method of regenerating C filters: and e.g. using NO ₂ ;	1	9
d	Could develop catalyst-based <u>filter</u> that works at low temperatures for diesel engines;	1	9
е	Removal of NO _x problems possible injection of fuel or ammonia;	1	9

13	Extra evaluation (2 max.)	
	Diesel are cleanest for gas emissions but produce high levels of smoke / particulates.	
	discussion of problems caused by oxidation of S to SO ₃ and its removal under reducing	
	conditions (reactions 4 and 5) [may be seen in bullet point 1]	
	in diesel engines catalyst oxidises NO to NO ₂ to clear filter	
	catalyst - ceramic material with an alumina coating absorbs lead;	
	oxygen sensors are used to give fuel control feedback to maintain fuel:air ratio;	
	no catalyst system removes CO ₂ which is major greenhouse gas;	

2852/01

Mark Scheme

Research skill in using and acknowledging sources of information

R1 List of sources used which should include the articles in the question paper and at least two additional and *relevant* references

1 for inclusion of Open Book paper articles (minimum: article 1 + article 2) 1 for TWO other sources, i.e. either or both Salters books + one other, OR two other sources,

1 for specification of at least one non-Open Book source by page numbers, section titles, site titles, encyclopaedia sections, search engine criteria

[3 marks]

R2 Appropriate material selected from the question paper and elsewhere to produce a report within the required word limit

[1 mark]

Examples of reasons why this mark may not be awarded include.

- exceeding the word count (see below)
- not declaring a page word count if you suspect the word count is over
- many sources quoted, with no evidence that they have been used
- excessive **irrelevant material** (use wavy line in left hand margin)
- inclusion of large amounts of material in appendices
- mis-use of sources e.g. repeated **errors** in material selected.

Guidance on word count		
< 1050 words	OK	
> 1050 < 1100	Lose 1 mark (R2)	
>1100	Draw line at about 1000.	
	Do not mark past this point	
	Lose 2 marks (R2 and C1b)	
Words on diagrams/in equations do not count but		
excessive use of lengthy text boxes inserted		
into diagrams should be penalised.		

R3 Text annotation

Text annotated where appropriate to acknowledge use of information from the sources listed

(1 mark for 2 or more relevant annotations)

[1 mark]

Examiner annotation: Underline candidate's annotation and write 'A' in the left hand margin for the first two sources seen.

[Total: 5 marks]

Quality of Written Communication

S Summary Four relevant **CHEMICAL** points which summarise the content of the candidate's own response.

Mark Scheme

[4 marks]

Ideas to look for...

- chemical reaction given in words
- description of process e.g. how heterogenous catalyst works/ free radical reactions
- conditions for particular reactions e.g. high temperatures
- definition of chemical terms e.g. catalyst, heterogeneous
- feature of a reaction e.g. molecules split homolytically

Main Report

C1 Structure of report

a Well-structured report with relevant information organised clearly and coherently without undue repetition.

Examples of reasons why this mark may not be awarded.

- **jumbled order** or difficult to follow report.
- **undue repetition** (*annotate* 'R' in left hand margin)
- a report where presentation and organisation of the information is weak enough to make the report difficult to follow.
- **b Balanced coverage** of the required points.

Examples of reasons why this mark may not be awarded.

• exceeding the **word count** (see R2) insufficient balance in the coverage of the **bullet points** on the question paper (use the pattern of marks on the grid as a rough guide).

C2 Clear and correct use of language

a Legible text, appropriate form and style of writing, grammar, punctuation and spelling accurate so that the meaning is clear.

[2 marks]

2 **spelling or grammatical errors** lose 1 mark, 4 errors lose both marks. *Examiner annotation:* by underlining error and writing 'S' or 'G' in left hand margin.

Examples of reasons why marks may not be awarded.

- Report not written in **continuous prose** e.g. note form or no use of paragraphs.
- Text or language is illegible or **difficult to follow**.
- **b** Correct use of **scientific and technical** terms.

[2 marks]

2 scientific or technical term errors lose 1 mark, 4 errors lose both marks.

[1 mark]

[1 mark]

Examiner annotation: by underling error and writing 'T' in the left hand margin. *Examples of errors.*

- Misuse/omission of **subscripts** or **superscripts** from formulae.
- Gaps in word processed text e.g. omission of ' \rightarrow ' from equations.
- **Incorrect terms** used e.g. absorption for adsorption.

Note: If the report contains no or **very few scientific terms**, diagrams or equations, one or both marks should be deducted due to insufficient evidence being available to award.

C3 Good use of equations and structural formulae

[2 marks]

2 marks for 8 relevant and correct of equations or structural formulae;
1 mark for 4 relevant and correct equations or structural formula

Notes:

• For minor errors e.g. missing subscripts, deduct technical language marks as shown in C2b but allow the equation to count towards marking point C3.

List of possible equations and structural formulae

production of NO₂ from O₂ and N₂ (four equations) production of acid rain from NO (three equations) structure of PAN steps 1 and 2 for production of ozone steady state of ozone production / removal production of hydroxyl radical <u>and</u> superoxide ion production of nitrate ion on Noxer block from NO₂ and/or NO desirable reactions in petrol engine conversion of SO₂ to H₂S

C4 Good use of appropriate illustrations (pictures, diagrams, tables, flow charts, graphs, etc.)

[2 marks]

2 marks for 4 relevant illustrations, well-positioned and labelled or well-linked into text; these may be from the articles in the question paper; **1 mark for 2 such diagrams**;

• **Annotate** script by writing 'D' ('Diagram') in the left hand margin.

Notes: Illustrations should be **correctly placed** so that they support the flow of the text. One or both marks can be lost if the illustrations are incorrectly placed.

List of possible illustrations

diagram of pollutants being released into atmosphere structure of titanium dioxide function of NOXER blocks mechanism of heterogeneous catalyst energy profile diagram for catalyst percentage gas conversion by catalyst / gas exhaust emission graph or chart continuously regenerating trap honeycomb structure of catalyst diagram of car with oxygen sensor

[Max. 10 marks]

Blank marking grid

			Script	
	Script	:-		
1	How pollutants form	abc		1
2	Further reactions	abc		2
3	Production of NO	ab		3
4	Acid Rain	а		4
5	Reaction mechanism	а		5
6	Heterogeneous catalysts	abcd		6
7	Noxer blocks	abcde		7
8	Additional chem points [MAX 2]	8 ₁ 8 ₂		8
	Chemistry	Max 14		
9	Environmental problems	ab		9
10		abcde		10
11		abcde		11
12		abcde		12
13	Additional Eval points [MAX 2]	13 ₁ 13 ₂		13
	Evaluation	Max 12		
		:-		
	R1 sources	1 + 1 + 1		1
	R2 appropriate material	1		2
	R3 annotation	1		3
	R total	max 5		4
	Summary	max 4		5
	C1 stucture	1 + 1		6
	C2 spag and technical C3 formulae and equations	2 + 2		7
	C3 formulae and equations	2		8
	C4 illustrations	2		
	C total	Max. 10		
	Final Total	Max 14		

Mark Scheme 2854 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (3) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks () should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme</u>. <u>Remember that scripts may be</u> <u>returned to Centres</u>.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme	()	 alternative and acceptable answers for the same marking separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit error carried forward alternative wording or reverse argument
---	----	--

Mark Scheme		Unit Code 2854	Session June	Year 2007	Version Final			
Question	Expected an				Marks			
1 (a)	26				1			
1 (b)		alcohol (<i>primary, tertiary are</i> lark separately.	CON) (1); ignoi	re cyclopentai	nol 2			
1 (c)	Two correct statements from: (<i>ignore incorrect statements</i>) delocalised; spread out over/shared between all <u>carbon</u> atoms/ the ring. <i>Ignore</i> <i>"spread over whole molecule"</i> ; not associated with bonds/ <u>pairs</u> of atoms; <i>ora for saturated ring</i> form a ring (implied) above and below plane of C atoms (AW)							
1 (d) (i)		(cyclo) alkene/ <u>carbon-carbon</u> double bond <i>ignore</i> C=C except to qualify "double bond"						
1 (d) (ii)		bromine (1); decolorised (<i>NOT discoloured</i>)/ brown/orange/yellow/red to colourless (1) <i>NOT clear</i>						
1 (e)	Both have C-H at 2850-2950 C=O/ ketone at 1705 - 1725 (cm ⁻¹); O-H/ alcohol/phenol/hydroxy(I) at 3200-3600/ 3600-3640 (cm ⁻¹); C-O at 1050-1300 (cm ⁻¹) TWO of these, bond(1); absorption range (1) Nandrolone differs by C-H at 3000-3100 (cm ⁻¹); C=C/ alkene at 1620- 1680 (cm ⁻¹); ONE of these, bond(1); absorption range (1) <i>if no mention of</i> <i>nandrolone, max 1</i> <i>do not award a mark for the following but allow ecf after first occurrence:</i> • <i>correct name rather than bond</i> • <i>value within range rather than range</i> • <i>wrong units</i>							
1 (f)	Acidified potassium (di)chromate (1) or correct formulae IGNORE acid type and incorrect formulae Heat/reflux (1) allow only if dichromate mentioned (even if as a slightly wrong formula)							
1 (g) (i)	HO HO CON							
1 (g) (ii)	Four differen	t groups around/ attached to	(a carbon) (1)		1			
1 (g) (iii)	Isomers are o	object and mirror image/ mirr	or images/ refle	ections (1)	1			

	Total	26
1 (h) (iii)	<i>M</i> _r /RMM/(relative)molecular mass/ mass of molecule/mass of parent ion/ fragments (1)	1
1 (h) (ii)	high-boiling (AW) liquid (1) on (finely divided, inert) solid support (1) allow "tube" for second mark if first mark scored unreactive gas/inert gas/nitrogen (1)	3
1 (h) (i)	$M_{\rm r} = 276 \ (1);$ 2.2 × 10 ⁻⁹ x 276 (<i>ecf on</i> $M_{\rm r}$) (= 6.1 × 10 ⁻⁷) (1) /1000 and evaluate = 6.1(6.07) × 10 ⁻¹⁰ (1) <i>ecf</i> 6.1(6.07) × 10 ⁻⁴ scores (2)	3

Mark Scheme		Unit Code 2854	Session June	Year 2007	-	rsion inal	
Question	Expected an	swers		· · ·		Marks	
2 (a)	H - C - C = C allow delocalised structure						
2 (b)		copper sulphate/nitrate <i>allow chloride</i> (1) sodium/potassium/lithium hydroxide (1) allow correct formulae					
2 (c)		2.1 precipitation2.2 acid-base					
2 (d)	(verdigris) is not affected by sunlight/uv/oxygen/air/water/CO ₂ / resists oxidation/ is stable/ will not decompose						
2 (e)	Any correct four from the following. Ignore incorrect (or CON) statements Indication that d energy levels are involved; excitation of electrons; absorbs in visible (AW) / absorbs colour; E = hv; complementary colour/ light not absorbed transmitted/reflected (NOT emitted); subsequent references to emission CON to this mark and: ligands affect energy difference/ splitting (1) not just "affect colour/ frequency" Allow all marks as labels on the diagram,				5		
2 (f)	rises to peak somewhere below 600(1); falls under word "red" (1) <i>can fall to zero</i>						
2 (g)(i)	Atomic emission spectrum will contain lines (1); Lines/ spectrum characteristic of each element (AW) (1)					2	
2 (g) (ii)	Electrons dropping energy-levels (1); Energy-levels/ gaps between levels differ for different elements (1)					2	
					Total	17	

²⁸⁵⁴

Mark Scheme		Unit Code 2854	Session June	Year 2007	Version Final			
Question	Expected a	nswers	•		Marks			
3 (a)	(glass) is op	paque to/ absorbs infrared (A	AW)		1			
3 (b) (i)	6s ² 6p ¹ (1) 1 second mar	for 6 (1) for s²p¹ <i>ignore 5d¹</i> ′ k	⁰ – anything else is	CON to	2			
3 (b) (ii)	 Forms 3+ IE/ AI reacts bonds; (loss of 3 e noble gas (e) 	 TI in Group 3/ same group as AI /has three electrons in outer shell; Forms 3+ ions/ oxidation state +3/(three) electrons easily lost/ low E/ AI reacts with halogens to form AIX₃ (AW)/ forms three covalent 						
$3 (c) (i) T^{\beta^{+}(g)} + 3B T^{\beta^{+}(g)} + 3Br^{-}(g) (1) -975 (1)$ $T^{l}(g) + 3Br(g) (1) +336 (1) +336 (1)$								
	ecf on numb	nthalpy changes ber 3 (eg 3Br) ies (with state symbols) that scripts (+5433) – allow 1 and						
3 (c) (ii)		ionisation enthalpies/energies (<i>or singular</i>) (of TI) (1); sum of first three of these (<i>depends on first being correct</i>) (1)						
3 (c) (iii)		(Enthalpy change of) formation/–177/–190 (1) allow symbols (e.g. $\Delta H_{\rm f}$)throughout						
3 (d)	42 moles Br = 3360g. 58 moles I = 7366g. (1) Ratio = $7366/3360 = 2.2 \text{ g}$ (1) allow ecf from calculation with one error							
3 (e) (i)		large size (1) small/single charge (1) low charge density scores (2) ignore electron density						
3 (e) (ii)	hydration/so	lattice enthalpy/energy (1) hydration/solvation energies/enthalpies (<i>or singular</i>) (1); sum of values for the ions(1)						
3 (e) (iii)	(enthalpy ch	nange of) solution (1) +325	(1) must have pos	itive sign	2			

	Total	27
	SPAG QWC (assess the whole piece; must be more than one sentence; bullet points are acceptable if written as sentences; sentences must start with capital letter; ignore commas; one SPAG error allowed – repeated mis-spellings of the same word count as one error).	
3 (f)	(fairly/ quite) high melting/ solid at room temperature/ brittle (1); strong forces between ions (1); conduct when molten (1); ions can move/ ions are free/ ions carry charge (1); ignore references to solution, boiling point or crystallinity	4

Mark Scheme		Unit Code 2854	Session June	Year 2007	Vers Fir			
Question	Expected a	nswers				Marks		
4 (a)	+5 (1); +3 (unless they	1) (1) max for signs after nu have signs	umbers NO Rom	nan numera	als	2		
4 (b) (i)	equilibrium/	incomplete dissociation/ioni	sation			1		
4 (b) (ii)	[H ⁺] [NO ₂ ⁻]/[HNO ₂] (1)				1		
4 (b) (iii)	pH = – log [l	$[H^+] = \sqrt{(K_a \times M)} = 6.86/6.9 \times 10^{-3} (1)$ stated or implied pH = - log $[H^+] = 2.16/2.2 (1)$ allow ecf on second mark if incorrectly calculated value of $[H^+]$ can be seen						
4 (b) (iv)		H ⁺] = [NO ₂ ⁻] / all H ⁺ comes from acid/ no H ⁺ comes from water / HNO ₂] _{eqm} = [HNO ₂] _{init} (AW)						
4 (c) (i)	+ H ₂ O(I) ign	+ H ₂ O(I) ignore state symbol						
4 (c) (ii)		(NO) is oxidised/(NO) is converted (AW) to NO ₂ (1); by oxygen/O ₂ (in air) (1) "NO reacts with oxygen (AW)" scores both marks						
4 (d) (i)	the air (ALLOW atmosphere)							
4 (d) (ii)					er (1)	6		
	 (equilibrium* move) reduces pressure/ opposes the change (1) *must be mentioned once QWC Use of three of the terms below in the correct context (2) Use of two of the terms below in the correct context (1) rate (of reaction); collisions/ collide (etc.); molecules/ particles; equilibrium; yield 							
4(d) (iii)	Operating costs: e.g. maintaining/ achieving high pressure/ thick pipes (AW) or Safety issues e.g. danger of explosions (1) or "Yield does not increase much" (AW)							
4 (e) (i)	$pNH_3^2/pN_2 \ge pH_2^3$ (2) ALLOW square brackets with "p".							
		up						
	Units atm ⁻²	(allow ecf unless + signs us	<i>ed)</i> (1)					

4 (e) (ii)	pNH ₃ = $\sqrt{(K_p \text{ pN}_2 \text{ pH}_2^3)}$ (1) stated or implied pNH ₃ = 28.8 atm (1); 3 sf - <i>if answer incorrect, mark separately provided there is some</i> <i>working</i> (1) ALLOW ecf from wrong expression in 4(e)(i) or first marking point	3
	Total	26

Mark Scheme		Unit Code 2854	Session June	Year 2007	_	sion nal	
Question	Expected a	nswers	•			Marks	
5 (a) (i)	amide ignor	e peptide				1	
5 (a) (ii)	C ₂ H ₅ group (stated or implied)(1); CH ₃ 2	.0 and CH ₂ 1.4	(1); Ratio	3:2 (1)	3	
5 (b) (i)	molecule con there is also For any ONE hydrogen bo polarity show lone pairs sh	one water molecule correctly hydrogen-bonded to O and one water molecule correctly hydrogen bonded to the H or N of N–H (1); CON if there is also an inappropriately hydrogen bonded water molecule For any ONE water molecule hydrogen bonded to O AND ONE hydrogen bonded to N-H (but not necessarily the same ones each time) polarity shown on both sides of each hydrogen bond (1); one pairs shown pointing down hydrogen bond(1); straight bonds O-H-O and N-H-O (1)					
5 (b) (ii)	benzene (rin	g)/ arene/ phenyl (1) IGNC	RE references t	o alkyl gro	oups	1	
5 (c)	•	anion (1); Ignor parately, unless $N^ Na^+$	re H₂O etc which does not s	core this i	mark)	2	
5 (d) (i)	No/little/resis	(1) No/little/resists change in pH (1); when <u>small</u> amounts (1) of <u>acid and/or</u> <u>alkali/base</u> are added (1) weak acid and its salt/ conjugate base (or equivalent for weak base) (1)					
5 (d) (ii)	$pH = -\log/\lg/\log_{10}[H^{+}(aq)] (1)$ $3.98/4 \times 10^{-8} (1)$						
5 (d) (iii)	3.9/3.98 = 0	975/0.98/1/1.0 (:1) ecf				1	
5 (e)	 B weak imf/ C fat is non- D ion(ised) stays in bloc E strong imitivater 	dissolves in fat/ can pass f weak bonds/ id or pd/ betw polar/ pd or id bonds in fat insoluble/less soluble in fat d/water i/ strong bonds/ ion-dipole/ broken if ion(ised) dissolve	veen fat and unic / more soluble in hydration/ betwe	blood/wa		4	

5 (f)	[salt]/[acid] = $3.3 \times 10^{-4}/3.98 \times 10^{-8} = (8.3 \times 10^{3})$ (1); ecf from any wrong expression in (d)(iii) ALLOW K _a ratio (8.46 x 10 ³) IF second mark scored. (much) more salt than acid / there are more ions/ more ionised (than phenobarbitol) (1); mark separately	2
	Total	24

Advanced GCE [Chemistry (Salters)] (3887/7887) June 2007 Assessment Series

Unit		Maximum Mark	а	b	С	d	е	u
2848	Raw	90	65	57	49	42	35	0
	UMS	120	96	84	72	60	48	0
2849	Raw	90	66	59	52	45	38	0
	UMS	90	72	63	54	45	36	0
2850	Raw	75	55	48	42	36	30	0
	UMS	90	72	63	54	45	36	0
2852A	Raw	90	73	67	61	55	49	0
	UMS	90	72	63	54	45	36	0
2852B	Raw	90	73	67	61	55	49	0
	UMS	90	72	63	54	45	36	0
2854	Raw	120	89	80	71	62	53	0
	UMS	120	96	84	72	60	48	0
2855	Raw	90	76	68	60	52	44	0
	UMS	90	72	63	54	45	36	0

Unit Threshold Marks

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3887	300	240	210	180	150	120	0
7887	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3887	20.3	40.6	59.0	75.0	87.6	100	9828
7887	28.8	52.4	72.7	87.0	96.5	100	6755

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.gualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

